GEOMETRY, GROUPS, AND CONTROL
  • Home
  • Research
  • Publications
  • Presentations
  • About

Presentations by the GGC

A complete list of our presentations may be found below. We frequently attend both local and international seminars, conferences, and workshops, and make research visits to other universities.

​Our plans for the near future are:
  • Claudiu Remsing will attend the 12th International ICMAT Summer School on Geometry, Mechanics and Control, Santiago de Compostela, Spain (July 2018).
  • Claudiu Remsing, Rory Biggs, and Catherine McLean will attend the 61st Annual SAMS Congress, Rhodes University, Grahamstown (December 2018).
2017
  • C.C. Remsing, Nonholonomic Riemannian Structures on Lie Groups, GTA, Pilsen, Czech Republic. ‌[PDF]
2016
  • R. Biggs, Isometries of Invariant Sub-Riemannian Structures on 3D Lie Groups, 7ECM, Berlin, Germany. [PDF]‌
  • C.C. Remsing, On the Classification of Control Systems on the Engel Group, 7ECM, Berlin, Germany. [PDF]
  • D.I. Barrett, Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups,  DGA 2016, Brno, Czech Republic. [PDF]‌
  • R. Biggs, Isometries of Riemannian and sub-Riemannian Structures on 3D Lie Groups, DGA 2016, Brno, Czech Republic. [PDF]‌
  • C.C. Remsing, Control Systems on the Engel Group: Equivalence and Classification, DGA 2016, Brno, Czech Republic. ‌‌[PDF]
  • D.I. Barrett, Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups, Univ. of Ostrava, Ostrava, Czech Republic. [PDF]‌
  • C.C. Remsing, On the Geometry of Control Systems: From Classical Control Systems to Control Structures, 4th International Conference on Lie Groups, Differential Equations and Geometry, Modica, Italy. ‌[PDF]
  • R. Biggs, Sub-Riemannian Structures on Nilpotent Lie Groups. 4th International Conference on Lie Groups, Differential Equations and Geometry, Modica, Italy. [PDF]‌
2015
  • R. Biggs, On the classification of lower-dimensional real Lie groups, EC Postgraduate Sem. Math., NMMU. [PDF]‌
  • C.E. Bartlett, Quadratic Hamilton–Poisson systems on the Heisenberg Lie–Poisson space: classification and integration, EC Postgraduate Sem. Math., NMMU. [PDF]‌
  • D.I. Barrett, Shortest vs Straightest Curves: Sub-Riemannian Geometry and Nonholonomic Riemannian Geometry, EC Postgraduate Sem. Math., NMMU.  [PDF]‌
  • R. Biggs, Riemannian and Sub-Riemannian Structures on the Heisenberg Groups. Workshop on Geometry, Lie Groups and Number Theory, Univ. of Ostrava, Czech Republic. [PDF]‌
  • C.E. Bartlett, Control Systems on the Heisenberg Group: Equivalence and Classification. Workshop on Geometry, Lie Groups and Number Theory, Univ. of Ostrava, Czech Republic. [PDF]‌
  • D.I. Barrett, Invariant Nonholonomic Riemannian Structures on Three-Dimensional Lie Groups. Workshop on Geometry, Lie Groups and Number Theory, Univ. of Ostrava, Czech Republic. [PDF]‌
  • C.C. Remsing, Invariant Control Systems on Lie Groups. International Conference on Applied Analysis and Mathematical Modeling, Istanbul, Turkey. [PDF]‌
2014
  • C.E. Bartlett, Equivalence of Control Systems on the Heisenberg Group. Maths Seminar, Rhodes Univ. (MSc report). [PDF]‌
  • D.I. Barrett, Invariant Nonholonomic Mechanical Systems. Maths Seminar, Rhodes Univ. (PhD report). [PDF]‌
  • R. Biggs, Invariant Sub-Riemannian Structures on Lie Groups. EC Postgraduate Sem. Math., NMMU. [PDF]‌
  • C.E. Bartlett, Equivalence of Quadratic Hamilton–Poisson Systems on the Heisenberg Lie–Poisson Spaces. EC Postgraduate Sem. Math., NMMU. [PDF]‌
  • D.I. Barrett, Invariant Lagrangian Systems on Lie Groups. EC Postgraduate Sem. Math., NMMU. [PDF]‌
  • R. Biggs, Invariant control systems on Lie groups. 2nd International Conference on Lie Groups, Differential Equations and Geometry, Univ. of Palermo, Palermo, Italy. [PDF]‌
  • D.I. Barrett, Optimal control of drift-free invariant control systems on the group of motions of the Minkowski plane. ECC 2014, Strasbourg, France. [PDF]‌
  • R. Biggs, Control systems on three-dimensional Lie groups. ECC 2014, Strasbourg, France. [PDF]‌
  • D.I. Barrett, Homogeneous and inhomogeneous quadratic Hamilton–Poisson systems on 3D Lie–Poisson spaces. Univ. of Debrecen, Debrecen, Hungary. [PDF]‌
  • R. Biggs, Sub-Riemannian Heisenberg groups. Univ. of Debrecen, Debrecen, Hungary. [PDF]‌
  • D.I. Barrett, Equivalence of Hamilton–Poisson systems on 3D Lie-Poisson spaces. 10th Meeting of Czech Mathematical Physicists, Prague, Czech Republic. [PDF]‌
  • D.I. Barrett, Quadratic Hamilton–Poisson systems. Univ. of Ostrava, Ostrava,  Czech Republic. [PDF]‌
  • R.M. Adams, Cost-extended control systems on \(\mathsf{SO(3)}\). Maths Seminar, Rhodes Univ. (PhD report).   [PDF]‌
  • R. Biggs, Invariant sub-Riemannian structures on Lie groups. Maths Seminar, Rhodes Univ. (PhD report).   [PDF]‌
2013
  • R.M. Adams, Stability and Integration on \(\mathfrak{so}\mathsf{(3)^*_-}\). Maths Seminar, Rhodes Univ. (PhD report).   [PDF]‌
  • R. Biggs, Quadratic Hamilton–Poisson systems. Maths Seminar, Rhodes Univ. (PhD report).    [PDF]‌
  • R. Biggs, On quadratic Hamilton–Poisson systems. EC Postgraduate Sem. Math., NMMU.   [PDF]‌
  • C.E. Bartlett, Invariant control systems on the Heisenberg group. EC Postgraduate Sem. Math., NMMU.  [PDF]‌
  • D.I. Barrett, Sub-Riemannian geodesics on \(\mathsf{SE(1,1)}\). EC Postgraduate Sem. Math., NMMU.   [PDF]‌
  • C.E. Bartlett, Nilpotent Lie groups and Lie algebras. Maths Seminar, Rhodes Univ. (MSc report).   [PDF]‌
  • C.C. Remsing, Feedback classification of invariant control systems on three-dimensional Lie groups. NOLCOS 2013, Toulouse, France.  ‌ [PDF]‌
  • C.C. Remsing, Some remarks on the oscillator group. DGA 2013, Brno, Czech Republic.   [PDF]‌
  • C.C. Remsing, Geometric optimal control on matrix Lie groups. Univ. of Palermo, Palermo, Italy.  ‌ [PDF]‌
  • R.M. Adams, Stability and integration on \(\mathfrak{so}\mathsf{(3)^*_-}\). GIQ 2013, Varna, Bulgaria.  ‌ [PDF]‌
  • R. Biggs, On quadratic Hamilton–Poisson systems. GIQ 2013, Varna, Bulgaria.   [PDF]‌
  • D.I. Barrett, Quadratic Hamilton–Poisson systems on \(\mathfrak{se}\mathsf{(1,1)^*_-}\). Maths Seminar, Rhodes Univ. (MSc report).   [PDF]‌
  • R. Biggs, Geometric control on Lie groups. Univ. of Debrecen, Debrecen, Hungary.   [PDF]‌
2012
  • C.E. Bartlett, The geometry of the Heisenberg group \(\mathsf{H_3}\). Maths Seminar, Rhodes Univ. (Honours project).    ‌‌
  • C.E. Bartlett, Hamilton–Poisson formalism and geometric control on Lie groups. Maths Seminar, Rhodes Univ. (Honours project).   [PDF]‌ 
  • R. Biggs, Control affine systems on 3D Lie groups. EC Postgraduate Sem. Math., NMMU.    [PDF]‌
  • D.I. Barrett, Quadratic Hamilton–Poisson Systems on \(\mathfrak{se}\mathsf{(1,1)^*_-}\). EC Postgraduate Sem. Math., NMMU.    [PDF]‌
  • R.M. Adams, SVD and Control Systems on \(\mathsf{SO(4)}\). EC Postgraduate Sem. Math., NMMU.   [PDF]‌
  • R.M. Adams, Control Systems on the Orthogonal Group \(\mathsf{SO(4)}\).  Maths Seminar, Rhodes Univ. (PhD report).    [PDF]‌
  • D.I. Barrett, A classification of control systems on \(\mathsf{SE(1,1)}\). Maths Seminar, Rhodes Univ. (MSc report).    [PDF]‌
  • R.M. Adams, On the equivalence of control systems on the orthogonal group \(\mathsf{SO(4)}\). CONTROL 2012, Porto, Portugal.    [PDF]‌
  • ‌R. Biggs, On the equivalence of cost-extended control systems on Lie groups. CONTROL 2012, Porto, Portugal.  [PDF]‌
  • R. Biggs, Cost-extended control systems. Univ. of Debrecen, Debrecen, Hungary.   [PDF]‌
  • R. Biggs, Cost-extended control systems. Maths Seminar, Rhodes Univ. (PhD report).   [PDF]‌
2011
  • H.C. Henninger, Controllability of left-invariant control affine systems on the Lorentz group \(\mathsf{SO(1,2)}\). Joint Meeting SAMS-AMS, Port Elizabeth. 
  • R. Biggs, On the equivalence of control systems on Lie groups. Joint Meeting SAMS-AMS, Port Elizabeth.   [PDF]‌
  • R.M. Adams, Equivalence of control systems on the Euclidean group \(\mathsf{SE(2)}\). Joint Meeting SAMS-AMS, Port Elizabeth.   [PDF]‌
  • D.I. Barrett, The semi-Euclidean group \(\mathsf{SE(1,1)}\). Maths Seminar, Rhodes Univ. (Honours project).
  • D.I. Barrett, The Campbell–Baker–Hausdorff theorem. Maths Seminar, Rhodes Univ. (Honours project).
  • R.M. Adams, Elliptic functions and optimal control. Maths Seminar, Rhodes Univ. (PhD report).  ‌  [PDF]‌
  • H.C. Henninger, Controllability on the Lorentz group. Maths Seminar, Rhodes Univ. (MSc report).  
  • C.C. Remsing, Control and stability on the Euclidean group \(\mathsf{SE(2)}\). ICAEM 2011, London, UK.  ‌ [PDF]‌
  • C.C. Remsing, An optimal control problem on the Euclidean group \(\mathsf{SE(2)}\). ICAAA 2011, Istanbul, Turkey.   [PDF]‌
  • R. Biggs, Control systems on the oscillator group. Maths Seminar, Rhodes Univ. (MSc report).   ‌ [PDF]‌
2010
  • R. Biggs, The category of left-invariant control systems. Maths Seminar, Rhodes Univ. (MSc report).  ‌ [PDF]‌
  • H.C. Henninger, Hyperbolic geometry on geometric surfaces. Maths Seminar, Rhodes Univ. (MSc report).  ‌ [PDF]‌
  • R.M. Adams, The Euclidean group \(\mathsf{SE(2)}\). Maths Seminar, Rhodes Univ. (MSc report). 
  • C.C. Remsing, Integrability and optimal control. MTNS 2010, Budapest, Hungary.   [PDF]‌
  • C.C. Remsing, Control and integrability on \(\mathsf{SO(3)}\). ICAEM 2010, London, UK.   [PDF]‌
2007–2009
  • C.C. Remsing, Stability and optimal control. ICMS 2009, Istanbul, Turkey.
  • C.C. Remsing, Optimal control, stability, and Hamilton–Poisson formalism. ICAMC 2008, Plovdiv, Bulgaria. 
  • C.C. Remsing, Matrix Lie groups. Maths Seminar, Rhodes Univ., 2007.   [PDF]‌
Powered by Create your own unique website with customizable templates.
  • Home
  • Research
  • Publications
  • Presentations
  • About